
artdaq Introduction and Status

artdaq is a toolkit for creating DAQ systems to be run on commodity
servers.
•  Integrated with the art event reconstruction and analysis framework for

event filtering and data compression.

Questions that I hope to answer in these slides:
•  What functions does it provide?
•  What is (or will be) available when?
•  What would a prospective experiment need to provide?
•  What choices does it impose?

Other topics:
•  Future plans
•  Demo?

05-Feb-2013 artdaq Overview - KAB 1

Typical DAQ functionality & components

Data movement and filtering
•  Hardware configuration and readout

Data transfer
–  Library(ies)
–  Transport layer

•  Event building
•  Reconstruction and filtering

–  Framework
–  Analysis modules
–  Experiment-supplied data

products
•  Data logging

–  Generic output modules
–  Experiment-specific output

modules
•  Process state behavior
•  Standard applications
•  Generic data components
•  Raw data format

Control
•  System control

–  Central application (Run
Control)

–  System state model and/or
supported control commands

–  Message protocol
–  Client library(ies)

•  Process management
•  Configuration management

–  Format
–  Distribution scheme
–  Storage; management tools;

archiving
–  Software configuration

parameter definition
–  Hardware configuration

parameter definition
•  Run history archiving
•  Slow controls
•  Remote control

05-Feb-2013 artdaq Overview - KAB 2

Monitoring
•  Distributed message logging

–  Logging libraries
–  Transport layer
–  Central viewing and logging

applications
•  DAQ monitoring (health and

performance of the DAQ system)
–  Client library
–  Central viewing and logging

facilities
•  Data Quality Monitoring (DQM –

monitoring the quality of the data
and the performance of the
detector)

–  Mechanics of making the
data available

–  Analysis software
–  Viewers for the analysis

results
•  Remote monitoring

artdaq for DarkSide-50

Data movement and filtering
•  Hardware configuration and readout

(ADC, trigger, TDC)
•  Data transfer

–  Library(ies)
–  Transport layer (MPI)

•  Event building
•  Reconstruction and filtering

–  Framework (art)
–  Analysis modules

(compression)
–  Experiment-supplied data

products
•  Data logging

–  Generic output modules
(ROOT)

–  Experiment-specific output
modules

•  Process state behavior (SMC)
•  Standard applications (boardreader,

eventbuilder, aggregator)
•  Generic data components

(RawEvent, Fragment)
•  Raw data format

Control
•  System control

–  Central application (Run
Control)

–  System state model and/or
supported control commands

–  Message protocol (XMLRPC)
–  Client library(ies)

•  Process management (PMT – uses
mpirun – easy configuration)

•  Configuration management
–  Format (FHICL)
–  Distribution scheme (sent

with control commands)
–  Storage; management tools;

archiving
–  Software configuration

parameter definition
–  Hardware configuration

parameter definition
•  Run history archiving
•  Slow controls
•  Remote control

05-Feb-2013 artdaq Overview - KAB 3

Monitoring
•  Distributed message logging

–  Logging libraries (MsgFac)
–  Transport layer (XMPP)
–  Central viewing and logging

applications (MsgFac)
•  DAQ monitoring (health and

performance of the DAQ system)
–  Client library
–  Central viewing and logging

facilities (Ganglia)
–  Custom metrics

•  Data Quality Monitoring (DQM –
monitoring the quality of the data
and the performance of the
detector)

–  Mechanics of making the
data available (art with
special input/output modules)

–  Analysis software
–  Viewers for the analysis

results
•  Remote monitoring

Key: part of artdaq: green; provided by experiment: orange; combination of artdaq and experiment: blue; not applicable or not yet discussed:black.

artdaq for DarkSide-50

05-Feb-2013 artdaq Overview - KAB 4

boardreader

Hardware readout
and configuration

Control messages Message logging

Fragment sending

Experiment-specific
implementations State machine

eventbuilder

art

Control messages Message logging

Fragment receiving
& event building

Experiment-specific
algorithms &

data products State machine

aggregator

art

Control messages Message logging

Event transfer
and ordering

Data sorting &
online monitoring

algorithms State machine

Process
Management

Tool

System Control
(Run Control)

Slow Controls
Remote Monitoring

Remote Control

Run History
Message
Viewing &
Logging

XMPP

M Instances N Instances

XMLRPC,
Standard commands

DAQ
Monitoring

Configuration Management

Storage, management
tools, archiving

Format

Distribution scheme

Software CFG params

Hardware CFG params

 green = part of artdaq now
 brown = part of artdaq soon
 orange = provided by the experiment
 blue = combination of artdaq and experiment
 black = not applicable or not yet discussed
 red arrows show data flow

DQM

General artdaq – available soon

Data movement and filtering
•  Hardware configuration and readout

(sample provided)
•  Data transfer

–  Library(ies)
–  Transport layer (MPI)

•  Event building
•  Reconstruction and filtering

–  Framework (art)
–  Analysis modules (sample

compression algorithm
supplied)

–  Experiment-supplied data
products

•  Data logging
–  Generic output modules

(ROOT)
–  Experiment-specific output

modules
•  Process state behavior (SMC)
•  Standard applications (boardreader,

eventbuilder, aggregator)
•  Generic data components

(RawEvent, Fragment)
•  Raw data format

Control
•  System control

–  Central application (Run
Control)

–  System state model and/or
supported control commands

–  Message protocol (XMLRPC)
–  Client library(ies)

•  Process management (PMT – uses
mpirun – easy configuration)

•  Configuration management
–  Format (FHICL)
–  Distribution scheme (sent

with control commands)
–  Storage; management tools;

archiving
–  Software configuration

parameter definition
–  Hardware configuration

parameter definition
•  Run history archiving
•  Slow controls
•  Remote control

05-Feb-2013 artdaq Overview - KAB 5

Monitoring
•  Distributed message logging

–  Logging libraries (MsgFac)
–  Transport layer (XMPP)
–  Central viewing and logging

applications (MsgFac)
•  DAQ monitoring (health and

performance of the DAQ system)
–  Client library
–  Central viewing and logging

facilities (Ganglia)
–  Custom metrics

•  Data Quality Monitoring (DQM –
monitoring the quality of the data
and the performance of the
detector)

–  Mechanics of making the
data available (art with
special input/output modules)

–  Analysis software
–  Viewers for the analysis

results
•  Remote monitoring

Key: part of artdaq “now”: green; part of artdaq “soon”: gold; provided by experiment: orange; combination of artdaq and experiment: blue; not applicable or not
yet discussed:black.

Future artdaq Ideas

Data movement and filtering
•  Hardware configuration and readout

(sample provided)
•  Data transfer

–  Library(ies)
–  Transport layer (MPI)

•  Event building
•  Reconstruction and filtering

–  Framework (art)
–  Analysis modules (sample

compression algorithm
supplied)

–  Experiment-supplied data
products

•  Data logging
–  Generic output modules

(ROOT)
–  Experiment-specific output

modules
•  Process state behavior (SMC)
•  Standard applications (boardreader,

eventbuilder, aggregator)
•  Generic data components

(RawEvent, Fragment)
•  Raw data format

Control
•  System control

–  Central application (Run
Control)

–  System state model and/or
supported control commands

–  Message protocol (XMLRPC,
other options)

–  Client library(ies)
•  Process management (PMT – uses

mpirun – easy configuration)
•  Configuration management

–  Format (FHICL)
–  Distribution scheme (sent

with control commands, other
options)

–  Storage; management tools;
archiving

–  Software configuration
parameter definition

–  Hardware configuration
parameter definition

•  Run history archiving
•  Slow control toolkit
•  Remote control (VNC instructions)

05-Feb-2013 artdaq Overview - KAB 6

Monitoring
•  Distributed message logging

–  Logging libraries (MsgFac)
–  Transport layer (XMPP, other

options)
–  Central viewing and logging

applications (MsgFac)
•  DAQ monitoring (health and

performance of the DAQ system)
–  Client library
–  Central viewing and logging

facilities (Ganglia)
–  Custom metrics

•  Data Quality Monitoring (DQM –
monitoring the quality of the data
and the performance of the
detector)

–  Mechanics of making the
data available (art with
special input/output modules)

–  Analysis and display toolkit
•  Remote monitoring (Screen

Snapshot Service instructions)

Key: part of artdaq “now/soon”: green; possible additions to artdaq: red; provided by experiment: orange; combination of artdaq and experiment: blue; not
applicable or not yet discussed:black.

Future artdaq Ideas

05-Feb-2013 artdaq Overview - KAB 7

boardreader

Hardware readout
and configuration

Control messages Message logging

Fragment sending

Experiment-specific
implementations State machine

eventbuilder

art

Control messages Message logging

Fragment receiving
& event building

Experiment-specific
algorithms &

data products State machine

aggregator

art

Control messages Message logging

Event transfer
and ordering

Data sorting &
online monitoring

algorithms State machine

Process
Management

Tool

System Control
(Run Control)

Slow Controls
Toolkit

Remote Monitoring

Remote Control

Run History
Message
Viewing &
Logging

XMPP

M Instances N Instances

XMLRPC,
Standard commands

DAQ
Monitoring

Configuration Management

Storage, management
tools, archiving

Format

Distribution scheme

Software CFG params

Hardware CFG params

 green = part of artdaq
 pink = possible additions to artdaq
 orange = provided by the experiment
 blue = combination of artdaq and experiment
 red arrows show data flow

DQM

Existing choices

Control commands are executed synchronously – a configurable timeout value
keeps them from running forever.

The state behavior is part of the core implementation…
•  A finite set of control commands is supported
•  Process state behavior is fixed (part of the artdaq)

05-Feb-2013 artdaq Overview - KAB 8

Supported external commands

Commands which affect the state of the process:
•  init(string ParameterSet) - initializes (configures) the process (and any associated hardware);

returns a success or failure report
•  start(integer runNumber) - begins a run; returns a success or failure report
•  stop() - ends a run; returns a success or failure report
•  pause() - pauses data taking during a run; returns a success or failure report
•  resume() - resumes data taking during a run; returns a success or failure report
•  shutdown() - prepares the process to be stopped (un-initialize); returns a success or failure report
•  soft_init(string ParameterSet) - initializes (configures) some fraction of the software components;

returns a success or failure report
•  reinit(string ParameterSet) - re-initializes parts of the software (or the hardware) during a run;

returns a success or failure report
Commands which gather information:
•  report(string which) - returns statistics or error reports from some or all of the components in the

process. The "which" argument specifies which statistics to report.
•  status() - returns the current externally visible "state"
•  reset_stats(string which) - resets some or all of the statistics in the process. The "which" argument

specifies which statistics to reset. Returns a success or failure report.
•  legal_commands() - returns the subset of the external commands which are currently legal given

the state of the process

05-Feb-2013 artdaq Overview - KAB 9

Externally visible states

•  Booted
–  init(pset)

•  Ready
–  init(pset)
–  soft_init(pset)
–  start(runNumber)
–  shutdown()

•  Running
–  pause()
–  stop()
–  init(pset)
–  soft_init(pset)
–  reinit(pset)

•  Paused
–  resume()
–  stop()
–  init(pset)
–  soft_init(pset)
–  reinit(pset)

•  Error
–  init(pset)

05-Feb-2013 artdaq Overview - KAB 10

The externally visible states are currently supported are listed here
along with the external commands that are allowed in each state:

Process state model (simplified)

05-Feb-2013 artdaq Overview - KAB 11

Main
InitializedMap InRunMap

Booted

InitializedMap

O-O

init/
push(InitializedMap::Ready)

Initialized

init/ shutdown/

init/
push(InitializedMap::Ready)

pop/

Ready

init/

shutdown/

InRunMap

O-O

start/
push(InRunMap::Running)

InRun

stop/

Error

stop/ init/

init/

init/

pop(init);

pop(shutdown);

pop/

Running

Paused

pause/ reinit/

stop/

init/

resume/

reinit/

stop/ init/

pop(stop); pop(init);

Preliminary artdaq class diagram

05-Feb-2013 artdaq Overview - KAB 12

artdaq Class Diagram

+initialize(pset : ParameterSet &) : boolean
+start(id : art::RunID) : boolean
+stop() : boolean
+pause() : boolean
+resume() : boolean
+report(which : string) : Report_ptr
+BootedEnter()
+do_initialize(pset : ParameterSet &) : boolean
+do_start(id : art::RunID) : boolean
+do_stop() : boolean
+do_pause() : boolean
+do_resume() : boolean

Commandable

+report(which : string) : Report_ptr
+BootedEnter()
+do_initialize(pset : ParameterSet &) : boolean
+do_start(id : art::RunID) : boolean
+do_stop() : boolean
+do_pause() : boolean
+do_resume() : boolean

EventBuilderApp

xmlrpc_commander

BoardReaderApp

AggregatorApp

+start(run_id : int)
+stop()
+pause()
+resume()
+getNext(fragments : Fragments) : boolean

FragmentGenerator

+initialize(pset : ParameterSet &) : boolean
+start(id : art::RunID) : boolean
+stop() : boolean
+pause() : boolean
+resume() : boolean

FragmentProcessor
+initialize(pset : ParameterSet &) : boolean
+start(id : art::RunID) : boolean
+stop() : boolean
+pause() : boolean
+resume() : boolean

EventBuilder

EventConsumer

Aggregator

EventConsumer

runs art

runs art

1) calls FragmentGenerator::getNext()
2) sends fragment to EVB or writes it
to disk or ...

StateMachine

StatisticsReporter

ExperimentSpecificSpecialization1

ExperimentSpecificSpecialization2

GangliaReporter

MessageFacilityReporter

ConsoleReporter

+writeWithFormat(stream, formatter)
Report

FragmentProcessorReport BoardReaderReport InitializationFailure

+write(val : double, stream, name : string)
+write(stat, stream, name)

Formatter

XMLFormatter

MessageFacility

1..2

Visual Paradigm for UML Community Edition [not for commercial use]

Details

We will be creating an initial release of the ds50daq code soon. It will be packaged and
deployed as a relocatable UPS product, similar to how artdaq and art are packaged and
deployed.

We could move the reusable pieces of ds50daq into artdaq with a couple of weeks of
notice and provide that to users as a UPS product.

In addition, we would like to create an artdaq-sample UPS product (and git repository)
that would demonstrate how a new experiment would create the experiment-specific
pieces of a system that uses artdaq.

05-Feb-2013 artdaq Overview - KAB 13

Current and future users

NOvA Data-Driven Trigger
•  art and a few classes from artdaq are being used to run trigger algorithms in the

buffer farm.

DarkSide-50:
•  artdaq will be used, as shown in an earlier slide.

uBooNE:
•  At the moment, individual classes from the artdaq library are being used in the data

transfer.

Mu2e:
•  artdaq will be used for initial DAQ development and testing with an eye toward using

it in the full DAQ. (The current baseline design uses FPGAs to do the event building,
but artdaq may provide a more cost-effective solution.)

Other candidates:
•  Minerva? LBNE, ORKA…

05-Feb-2013 artdaq Overview - KAB 14

Backup slides

05-Feb-2013 artdaq Overview - KAB 15

Generic DAQ

05-Feb-2013 artdaq Overview - KAB 16

D
at

a
lin

k
ca

rd

Fragment Receiver Event Builder art

Fragment Receiver

Multicore node
D

at
a

lin
k

ca
rd

P
C

Ie
 b

us

P
C

Ie
 b

us

Event Builder art

Multicore node

... [x M] ... [x N]

Multicore node

Multicore node

Lots of variations:
•  multiple fragment receivers per front-end node
•  multiple event builder/art process pairs per reconstruction node
•  (multiple art processes per event builder)
•  everything run on a single node
A flexible configuration process makes testing and deployment easier.

(Round-robin routing
of fragments)

Initial artdaq Goals

•  Support the use of commodity computers as close to the data
collection as possible.

•  Make efficient use of multi-core computers.
•  Take advantage of high-speed networking and hardware buses.
•  Support modular algorithms, enable the use of GPGPUs.
•  Enable collaborators to contribute to online code development.
•  Allow for concurrent processing of events to best utilize all of the

cores on a node.
•  Support easy system reconfiguration.
•  Allow for similar or identical algorithms to be used offline and online.
•  Provide an environment for R&D tasks.
•  Provide a springboard for DAQ development in future experiments.

04-Feb-2013 artdaq - Concurrency Forum 17

Initial artdaq architecture (this has changed)

05-Feb-2013 artdaq Overview - KAB 18

Experiment-specific
hardware readout

Experiment-specific
output modules

MPI and mpirun

In artdaq, MPI (Message Passing Interface) is used to transfer data between
the distributed processes and to manage the processes.
•  MPI is “a library specification for message passing, designed for high

performance on parallel machines and workstation clusters.”
•  It supports point-to-point and collective messaging. It also supports parallel

execution features such as synchronization between processes (e.g. all
process wait until they have all reached a certain point in their execution).

•  An MPI “program” contains all of the cooperating processes, and startup is
handled by an agent (mpirun) that runs the program on a configurable set of
nodes.

•  In MPI-1, the same executable binary is used for all processes, and the
different processes know which role to perform based on their “rank”.

•  For the initial artdaq test system, we wrote a straightforward Python script
to automate the configuration of the nodes and handle the invocation of
mpirun.

05-Feb-2013 artdaq Overview - KAB 19

DarkSide-50 Architecture

05-Feb-2013 artdaq Overview - KAB 20

Fragment Receiver

D
at

a
lin

k
ca

rd

Fragment Receiver

Fragment Receiver

Fragment Receiver

Event Builder art

Aggregator

Fragment Receiver

Fragment Receiver

Fragment Receiver

Fragment Receiver

Fragment Receiver

Fragment Receiver

Fragment Receiver

Fragment Receiver

Multicore node

D
at

a
lin

k
ca

rd

D
at

a
lin

k
ca

rd

P
C

Ie
 b

us

P
C

Ie
 b

us

P
C

Ie
 b

us

… [5 total]

Event Builder art

Multicore node

Q
D

R
 In

fin
ib

an
d

N
et

w
or

k

x N instances

x N instances

DarkSide-50 DAQ Hardware

05-Feb-2013 artdaq Overview - KAB 21

Performance Studies

04-Feb-2013 artdaq - Concurrency Forum 22

To test the performance of a candidate compression algorithm for DarkSide-50, a cluster of four
32-core nodes connected by a QDR Infiniband switch was used. In this test, the detector
electronics was simulated by a Linux process that read DS50 fragment data from disk. In this
test, all five Fragment Receivers, all five Event Builders, and all five art reconstruction
applications (with 5 threads – one per fragment) were run on the same host to make use of all of
the 32 cores on the machine.

Throughput results, with no compression, as a function of time
during the test. In the test, the event size was 6 MB, so the
average throughput data rate was 2.2 GB/s.

Performance results from a test of a candidate Huffman
compression algorithm. The compression time results are per
event per art process, so the overall measured rate was ~250
events per second.

Additional Performance Results

Mu2e-like system
•  In Mu2e, data will be received directly into the processor farm PCs, and the event

building will be done between those PCs.
•  Using a test cluster of five 32-core nodes connected by an InfiniBand QDR network,

we measured the throughput of configurations where a FragmentReceiver process
and an EventBuilder process ran on each node. The result was ~730 MB/s per node.

•  To handle the 30 GB/s needed for Mu2e, this would translate into ~42 nodes (a
reasonable number).

05-Feb-2013 artdaq Overview - KAB 23

DarkSide-50 system
•  When the DarkSide-50 DAQ machines were running

here at Fermilab (before being shipped to LNGS),
tests were run in which a FragmentReceiver process
produced simulated data on each of 4 front-end
computers. Studies were done to see how many
EventBuilder processes were needed to handle the
rate from the 4 FragmentReceivers. The results are
shown in the graph on the right.

